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Under this contract we addressed two topics. Firstly, we proposed a non-linear operator

for tracking multi-component-signal parameter. This topic is described in paper #1.
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INSTANTANEOUS NON-LINEAR OPEPATORS FOR TRACKING
MULTICOMPONENT SIGNAL PARAMETERS"

R. Kumareson t  A. G. SadasiO C. S. IRomalingem, J. F. Kaiiec
'Department of Electrical Engineering, University of Rhode IWland, Kingston, RI 02881.

'Department of Electrical Engineering, Rutgers University, PiscatawaT, NJ 08855.

ABSTRACT sion of the energy operator *(.) is an insltantaneous non.

We have extended the Kaiser-Teager algorithm for sep- linear function of the samples of a signal:

&rating the contributions of the amplitude modulation and -
frequency modulation of a single sinusoid to a signal con-
sisting of multiple components. To achieve this separation, If z, represents a sinewave, i.e., z. = A, cos(w in + i),
we use an instantaneous non-linear operator, which turns whose radian frequency w, is constant, then the 'energy'
out to be the determinant of a Toeplitz matrix formed with q(z.) - A2 sin2 ". [5]. Observe that this quantity is time-
the signal samples. Because of its instantaneously adaptive invariant. Using this functional dependence of energy on
nature, we can use this algorithm to track parameter vara- the frequency and amplitude of a sinusoidal signal, Kaiser
tions in the signal components, provided these variations are d h collaborators (7] devised methods to separate the
not too rapid. We demonstrate this using a synthetic signal contribution of the amplitude and frequency of a signal.
containing two AM-FM signal components and a speech sig- They then applied this method to &pproximately deter-
nal. We also point out the method's relationship to Prony's mining the amplitude and frequency variations of an am.
method. plitude/frequency modulated (AM-FM) signal. Although

their method is computationally simple and instantaneously

1. INTRODUCTION adaptive in nature, it cannot be directly applied to track-
ing amplitude and frequency variations of signals composed

In many applications, such as speech processing [1, 2], radar of multiple components as in (1). For such multicomponent
signal processing [3], one can model the observed signal as signals, Kaiser [5] advocates first separating the signals into
a linear combination of a small number of sinusoidal sig- frequency componenti by filtering.
nals that are slowly time-varying in both amplitude and In this paper we extend the method in [7) to simulta.
frequency. In such cases, a signal consisting of m compo- neously tracking the amplitude and frequency variations of
nents may be paraanetriaed as multicomponent signals. This is accomplished by using cer-

tain instantaneous non-linear operators on the signal sam-
"" ' pies. These can be motivated by viewing the Teager energy

z(t) = 2EA.(t)Coi(Ua(t)), (1) operator ir(z.) as the determinant of a matrix:

where wk = id + 0a(t). ws is the nominal carrier fre- (,) --- De t  J - (3
quency of the kin component, while #h(t) and Aa(t) are the
time-varying frequency and amplitude, respectively. Given As mentioned before, this determinant is time-invariant for
the signal &(I), one wishes to determine and track the am- a single sinusoidal signal with constant frequency. We have
plitude envelopes and the frequency trajectories of the in- shown [8] that this time-invariance property of the dcter-
dividual signal components. Traditional short-time Fourier minant can be extended to an appropriately constructed
transform methods are not always successful in processing higher-order m x m matrix, whose elements are the sam-
such signals due to their limited resolution. The so-called pies of a sum of m sinusoids. A similar result has been ob-
time-frequency representations, such as the Wigner distri- tained for continuous-time signals as well [8]. In section 2
bution, have their own problems with multicomponent sig- we have outlined this result. In section 3 we show how these
nals (4]. results can be related to the energy separation algorithms

Recently, Kaiser (5, 61 Introduced a novel approach to derived by Maragao, Quatieri, and Kaiser (7]. Further, in
track the frequency and amplitude variations of a single section 4, using the functional dependence of these deter-
component signal by applying what is called an energy op- minants on the frequencies and amplitudes of the sinewave
erator. Originally devised by Teager, the discrete-time ver- components, we describe the two-component AM-FM sep-

aration algorithm. We obtain explicit expressions for the
THIS WORX WAS SUPPORTED BY AN AIR FORCE instantaneous frequencies of two (real-valued) component

CONTRACT"AFOSR 420-2-J-o079 signals. This can be extended to up to four component
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However, beyond four -componeuta one has to root Note that this determinant is always positive, and of course,

lysomidal to obtain the frequencies. This is reminiscent time-invariat. The essence of the above results can be ex-

,• well-known Proaly's method [9). pressed in words as follows: For a sequence sn, composed
of a sum of m complex-valued sinewaves with arbitraty fre-

t. TIME INVARiANqCE Of THEt quencies, phaes, and amplitudes, there exists an instanta-
DETERMINANT OF A TOEPLITZ MATRIX neons non-linear function involving (2m - 1) samples that

t 2. be the samples of a linear combination of m takes on a coUstant magnitude anywhere on the time-index

tplex-valued, dkrete-time sisoidaJ signals with arbi. aXIs. A si-mla statement is true for real-valued sinewaves.

y phases and non-zero amplitudes, i.e., This appears to be a useful fact as demonstrated below.
SSimilar results can also be obtained for continuous-time sig-

ns/, (8].

. (4) Now assume that the sequence z. in (4) is pused

bal through a linear tjme-inovaria~nt filter with impulse response
)h n h H(ej,). Then the output sequence y.n may be writ.

The distinct radian frequencies wok C (0, 2r) have no par- ten as "
* uCular relationship between themn. Consider the followingMII
mx in Toeplitz matrix X.(n) formed with the elements of y E, A.("'n+&) , (9)

* the sequence C.: k.2
S where A', - A& H(eoJ'). This result follows from the (act

SZ z,,+l ..- Znm-m... 1that complex exponentiasL ar eigenfunctions for a linear
-Z .-- zm-2 time-invariant fUtet. It we construct an m x m Toeplitz

matrix Y.(n) (aimilar to X,(n) in (5)) with the elements

Zn..."l rn+2 * 95 of the sequence f., since the expression for yi is akin to
that of z,, in (4), we can write down the determinant of

m Using the definition of zx in (4), we can decompose X.,(%) Yt(a) using (7) as

Sinto a product of three matrices to facilitate the computa-
tion of its determinant, Ax, where the dependenceonm an in Ay= Ae'A' ') 4si 4orin -( 6k • •) (10)

a.nd n is not explicitly shown for notational simplicity. This 2

decomposition may be written as 6<1

(n =Therefore, the determinants of Y,.(n) and X.m(n) are ro-
SVA(n) VTM, • lated as follows:

The superscript '•' denotes Hermitia~n transpose. The di- 'ar

agonal matrix A(n) has Ak a Ahor(oa'÷""),/ k= 1,2,....m Ay = Ax I. H(eJ'h) . (11)
u its diagonal entries. V is a Va•dermonde matrix [10] h,.
with entries vi =--- eiw(6-'), k, l at 1,2,.. ,m. Note that
the diagonal matrix in the middle is the one that shows Next, we show the relationship of the aboye results to the
dependence on the time index. The determinant of V is Discrete Energy Separation Algorithms (DESA) of Maragos

n' •., 5].,<1(e e. - d-1) [10] and the determinant of A(n) is C a*. [7].

fl A&cej''"÷V). Hence, after some simplification, 3. RELATION TO THE DESA ALGORITHMS

In [7] Maragos et al. have proposed two algorithms, viz.,

Ax - 1 Ai2 DESA-2 and DESA-1, to separate amplitude modulation
2 (wA e' w!) from frequency modulation using the energy operator. Us.

ing the results derived in the previous section we first show
how we can obtain their algorithns. Extension to more

Since the complex-valued factor in the above formula has than one component is discussed in the next two sections.
unit magnitude, we observe that the magnitude of Ax is Let r,, = Ai(n)cos(w,(n) + 01) correspond to a single
invariant with the time index. AM-FM signal. Let us assume that Ai(n) and wi(n) are

If the signal is composed of m/2 real-valued sinusoids. only slowly varying and that they can be approximated as
X.e.. :,. - X7=/ Ak cos(wi,n it+ #k) . then wh +.•/ M -" constants over any consecutive three-sample period. Since

and *54m/2 - -4, for k - 1,2 .... , n/2. This leads to z. consists of two complex exponentials (n = 2), from (8)
further simplification of (7) for dox: &x = Af(,a) sin2f[i(n)). Next, filter x. through a filter

with impulse response . -- if, 0,-i} DT.T I •( --T)

- *iflto yield y,. Using (11), ay is found to be
5A! sin, W)but 46Y = Ax /f•'•> {(-'ar)

"1/ 2 s ( +af(A( sin2[i,,(-)] 2 -

2. +' - AA(n) ain'[,,(n)] (12)

-405-
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which immediately lea/s to DESA-2. To obtk.;n DESA-1 for I < & < m. Or, using matrix notation,
we observe that V,. is the output of a filter whose transfer
function is Jfj(e'J'). I - 6-J", while zft is the result of 41 43,j (~
filtering s. by H2 (e'") - e'* - 1, sand applying (11) yields (42 121 b2 (
Eq. (5) in [71. Thus, these two of the algorithms proposed in : . " ."
17) can be obtained as special caes of the above expresions.

The algorithms devised in (7] have the disadvantage of "" ,
being applicable to only single-component AM-FM signals. (16)
Using (11) we next show how to separate amplitude from where bi, is the (h + 1)" term in the expansion of

frequency modulation in the case of a two-component AM- F[- (I + eij-()). Since the at's are distiuct, the Vander.
FM signal. monde matrix on the left-hand side is non-aingular. Hence

(16) can be solved by matrix inversion. The frequencies
ws(n) are easily seen to be the angles of the roots of the

4. A TWO-COMPONENT AM-PM SIGNAL polynomial 1 + E'l bi z-'. Once again, the assumption is
SEPARATION ALGORITHM that the parameters of the AM-FM signal can be approxi-

We now extend the above algorithm to separate a (real- mated as constants over ny 2m-sample interval.

valued) two-component AM-FM signal. Let '• = 6. SIMULATIONS AND DISCUSSION
AI(n)cos(ti(n) + ) + A:-(n)cos(•C(n) + O). For this
case, m = 4. Next, we filter et by Hi (0') = I + e-' to As an illustrative example of the above techniques, consider

get Y() and by H3 ') = 1 - ejd to set Y. As before, the following two-component AM-FM signal of the form

we assume that A,(n) and w,(n), i = 1,2 are only slowly s(n) m Ar(n)si(n) + Aa(n)s2 (n), where

varying so that they can be approximated as constants over /
any period of 2m = 8 samples. Hence, as before, using (11) cog :0.25in + n m- 0, 1,..., 200

cog 0.35rn - M n = 201,202,..., 399

ax - 1
0.5n- n 0,1,. 199{ cos 0.4r, + M =200, 201,....399

Simplifying, we obtain AI(n) = 1-0.25co.("•+ O) nF= 0, 1,... ,399.Ain = 1-0e. 5coo. + +

O wi(n).-w,(n) ,-cos (n)+w2(n) (13) The overall signal i(n) is shown in Fig. I(a). The estimated
o 2 ÷ 2 'frequency tracks are shown in Fig. I(b). The amplitudes,

wi u)-3(n) -i +(n) obtained by solving a set of linear equations in the least-
co co2n "2 n (14) squares sense, axe shown in Fig. 2(c). In solving for the

2V"o 2 2 "frequencies, we found that (13) and (14) led to numerical

difficulties even in the presence of small amounts of noise.
From the above two equations we can solve for w i(n) and ThLi is because the argument of the inverse cosine function
wz(n), respectively. Once the frequencies have been corn- did not always have magnitude less than unity. On the other
puted, the amplitudes can be obtained by solving a set of hand, frequency estimates obtained by rooting a polynomial
linear equations in the least-squares sense. were found to be more robust. Hence this approach was

used.
We next applied this algorithm to speech data cor-

S. MULTICOMPONENT AM-FM responding to the phoneme /oo/ (16 kHz sampling fme-
SEPARATION ALGORITHM quency). The data contained four formant frequencies

The AM-FM separation algorithm developed in the previ- around 500 tz, 1200 Hx, 2300 HE, and 3100 Hz., respee-
ous section can be generalized to deal with an rn-component tively. Subsequent low-pass filtering eliminated the third
signal. To this end, consider m distinct length-two filters, and the fourth formant frequencies. Fig. 2(a) shows the fd-
with transfer functions of the form Hk(e"') = 1 + sh ei., tered speech signal. We used a model order m -= (four real
1 !5 k < v. The a& are, in general, complex. Denote by ) sinusoids) on this data. Fig. 2(b) shows the first two for-

- Tmant frequency tracks, after smoothing by an eleven-point
the output of the filter Hk(eJ'( ) with r, as its input. Then, median filter. In Fig. 2(c) the corresponding least-squazes
applying (11), the determinants of the m x m Toeplits ma- estimates of the amplitude envelopes are shown, which used
trices formed from the samples of V. and yv ) are related the median-filtered frequencies. Even though the filtered
by signal has only two dominant components, a model order of

Ay, Ax • (I + i,6 (IS) oWe thank Dr. Shubha Kadambe of A. I. duPont Institute,
-Il DE, for supplying us the speech data used in our simulations.
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4 (two reaJl sinusoids) yielded poor estimates of the for- [4] I. H. Choi and W. J. Williams, "Improved time-

,.st frequencies. Increasing the order to m = 6 improved frequency representation of multicomponent signals us-

ae stisate noticeably; the estimates were, however, still ing exponential kernel&," IEEE 71unu. Acoust., Speech
joisy- A model order m - 8 was the asiallest order required and Signal Process., vol. ASSP-37, pp. 862-811, 1989.
j. yield riasonable results tor this example. [51 J. F. Kaiser, 6On b simple algorithm to calculate the

7. CONCLUSIONS 'energy' of a signal," in Proc. IEEE ICASSP-90, (Al-
buquerque, NM), Apr. 1990.

We have extended the Kaiser-Teagcz method to multicom- [63 1. F. Kaiser, 'On Tcaget's eneirgy algorithm and its
* ponent signals. Even though this approach appears to be generalization to continuous siguals," in Proc. IEEE

different from traditional frequency estimation algorithms, DSP Workshop, (New Paltz, NY), Sep. 1990.
it bears a close resemblance to the Prony's method in that
it requires polynomial rooting to estimate the component [7) P. Maragos, 3. F. Kaiser, and T. F. Quatieri, 4On sep-

frequencies, particularly if rn is larger than four (for coin- uatting amplitude from frequency modulations using

plex signals) or eight (for real signals). It seemn hard to energy operators,* in Proc. IEEE ICASSP-92, (San

cape from the clutches of Prony's method. There is scope Francisco, CA), Mar. 1992.

for improving the method's performance in the presence of
noise by choosing the H&(eJ') appropriately.

L.3

LSn

sI I '
_j

(4) (b) (c)

Fig. 1 (a) Two-component AM-FM signal. (b) Estimated frequency tracks, smoothed by an 11-point median filter.
(c) Estimated amplitude envelope* obtained via least-squares solution that utilzed the median-filtered frequencies.

"31 in No

(a) (b) (c)

Fig. 2 (a) Signal from speech vowel /oo/, filtered to retain only the first two formant frequencies. (b) Estimated frequency
tracks of the first and aecod formant frequencies, smoothed by an 11-point median filter, Assumed model order: m n= 8.
(c) Estimated amplitude envelopes obtained via least-squares solution that utilized the median-filtered frequencies.
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ON ACCURATELY TRACKING THE HARMONIC COMPONENTS' PARAMETERS
IN VOICED-SPEECH SEGMENTS AND SUBSEQUENT MODELING BY A

TRANSFER FUNCTION'

R. Kurnore•son C. S. Rarnolingom A. G. Sadoasi

Department of Electrical Engineering, University of Rhode Island, Kingston, RI 02881

ABSTRACT (see also the references therein) have carried out extensive

We propose an improved method to model voiced work in modeling both voiced and unvoiced speech by us.

speech signals. First, we describe a method to accurately ing a linear combination of sinusoidal signals. They have

model the signals using a linear combination of harmoni- applied it to speech coding, co-channel interference supprcs.

cally related sinewaves. The method fits a linear combi- sion, and time scaling of speech. The algorithms proposed

nation of sines and cosines whose frequencies are integer in the above references rely primarily on the STFT (or some

multiples of the unknown fundamental (pitch) frequency modification of it) to obtain the sinewave decomposition.

to the speech data in the least-square sense. The amphi- In this paper. our primary contributions axe two-fold:

Ludes of the sinewaves and the fundamental frequency are . We describe a method to accurately estimate the fun-
the unknowns and are determined simultaneously using the damental/pitch frequency and the amplitudes of the
least-squares fit. Using our method, we show how one can harmonically related sinewaves simultaneously, using a
obtain smoothly varying frequency and amplitude tracks direct least-squares fit to the speech data. Such meth.
for all the harmonics and thus model the speech signal pax- ods are well known to model-based spectral a.nalyis
simoniously. After obtaining the harmonic decomposition, practitioners but appears not to have been used in
we regard the time-varying amplitudes of the cosinusoidal e analysis We apply this method to a speech

and~pec analysiis. Wemoi coppnelt thi metho teo a speech
and sinusoidal harmonic components as the real and iag- segment over short, possibly overlapping windows. Up-
inary parts of the complex-valued frequency responses of Lke in [1), we do not assume that the analysis window
the slowly time-varying filter representing the vocal tract be an integer multiple of the pitch period or use the
and glottal excitation pulse generator, in cascade. We then STFT peanit to determine the parameters. Also, we do
fit a sequence of re -pole/pole-zero models to the complex not employ the pitch synchronous analysis advocated
frequency response values. in [5). Using our method we show how one can ob-

tain smoothly varying frequency and amplitude tracki

1. INTRODUCTION for all the harmonics and thus model the speech signal

Voiced-segments constitute a significant portion of speech parsimoniously. This method is in fact the maximum-

signals. Ie many applications, it is important to extract fea- likelihood method, if the background noise is white and

signsuch as the pitpch frequency and the vocal tract trans- the assumed signal model is valid. Therefore, if the
tures sspeech signal is corrupted by noise, it may be advanta-
fer function from these segments accurately, even when the geous to estimate the harmonic components first using
speech signal is corrupted by noise. Usually, short-time our method and then use them as 'cleaned-up' data for
Fourier transform (STFT), linear prediction (LP) or cep- further modeling of the vocal tract etc.
stral methods are used to extract these features.

Voiced-speech signals are often modeled as the output of a After obtaining the harmonic decomposition, we regard
slowly time-varying linear filter representing the vocal tract, the time-varying amplitudes of the cosinusoidal and st-
excited by a quasi-periodic glottal pulse train. If the glottal nusoidal harmonic components as the real and imagi-
pulse train were indeed exactly periodic, it can be repre- nary parts of the complex-valued frequency responses
sented by a Fourier series with the fundamental frequency of the time-varying filter, representing the vocal tract
corresponding to the pitch frequency, which is given by the and glottal excitation pulse generator, in cascade. We

reciprocal of the period of the pulse train. Since the pulse assume that this cascaded filter is slowly time-varying.
train is only quasi-periodic, the voiced speech w&veform We then fit a sequence of transfer function models to
may be modeled by a sum of harmonically related sinewaves the complex frequency response values.
with slowly varying fundamental frequency, with arbitrary
amplitudes and phases. Many authors, perhaps starting 2. ACCURATELY ESTIMATING THE
with Flanagan, have observed this feature and taken ad- HARMONIC COMPONENTS
vantage of it. Recently, McAulay and Quatieri [1, 2, 3, 4) Let us assume that a block of N samples of r., nf

THIS RESEARCH WAS SUPPORTED BY AN AFOSR 0, ... , N-I1, is to be modeled by a signal sa consisting of M
CONTRACT # F4s6-o-,-J-o:7U harmonically related sinewaves with unknown amplitudes

472
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ud fundamental frequency c.o. M is assumed known, as modeling unvoiced segments, the modeling procedure can
be modified, to lea•st-square fit a linear combination of si-
nusoids which are riot necessarily harmonically related, to

3, Ah cos(iwokn) + B ain(wokn) . (1) the data. In this case it may be necessary to filter the data
k=1 into two or more frequency bands to reduce the number of

Ve wih to minimize the sum of squared errors by choosing sinusoida needed for the fit in each band.

he unknown amplitudes and the frequency wo, S. ANALYSIS OF VOICED-SEGMENTS
N-1 USING PROPOSED METHOD

E - - S.). (2) Fig. I shows 3500 samples of the phoneme /oo/. The data
was sampled at 16 kHz. Before applying the above algo-
rithm to the speech data we low-pass filtered the data to

n rnacrix-vector notation, let x - (z:,o ,..., x-•)T and about 1000 Hz and down-sampled by 4, for the fo]]owing
S= (so,......-)" denote the data and signal model reasons:
vectors, respectively. Using the model given in (1) we cast The low-pass region from 0-1 kHz contains the major
*rite the signal vectors as portion of the signal energy.

s = Wa, (3) a In this region the number of harmonic components with
significant energy is likely to be small i.e., of the order

,,here a is the 2M x I vector of unknown amplitudes a of 10 or less and down-sampling reduces the required
(AA ... , Am, B, B2, . B )T and W is aul N x 2M computation.
ratrix, whose (k,I)-th element is given by * Often the pitch frequency wo varies slowly with time.

I This causes the harmonic components (some integer
cos(k(io) 1 = 1, 2,... , M multiple of wo) in the high frequency range (say, near., sin(k(l- M)w.e) I = M + 1, M + 2..... 2M 3000 Hz) to sweep rapidly in frequency. We wish to

exclude such components in our modeling, because trtefor E = 0,1. N - 1. Using this notation we can rewrite model in (1) is less valid for such components.
the error £ as

E = 1lX - Wall' () Fig. 2 shows the magnitude of the Fourier transform of the
Since both W and a are unknown, this problem is a bilinear entire signal prior to filtering and down-sampling.
least-squares problem. Such problems have been dealt with Next, we applied the algorithm described in section 2 to
in numerical analysis and spectral analysis literature for the estimate wo on overlapping blocks of data. Fig. 3(a) shows

past 20 years 16) (equation 16.152). The standard trick is to the error E as a function of the possible candidate --'o's for
a.sume that wo is known and then solve tht least-squares the initial part of speech data.. To find the minimum we first
problem for the best amplitudes. For a given wo the best performed a coarse search to get a good initial guess and
amplitude a is given by then used a gradient descent procedure (7] to find the global

minimum of E which gave the best w.o estimate. Fig. 3(a)
a (WrW)-Y WTX (5) also shows the effect of block size on E as it is changed from

one pitch period (32 samples) to about three pitch periods
Substituting this value of a back into the error expression (96 samples). Note that the valley with the global minimum
in (4) gives gets deeper u the siz of the block increases. However, as

the block site is increased, the optimal uwo also increases,
E = x '(I - W(WTW)-IW7)x, (6) because, in this example, the pitch frequency is slightly in-

creasing with time. Fig. 3(b) shows the value of E as awhere we have used the fact that the projection matrix function of the number of assumed harmonic components
(I-W(W"W)-1 WT ) is idempotent. Note that E now de- M (M varying from 2 to 5) for a fixed block size of 64
pends explicitly on the unknown wo only. This error can be samples. Observe that the location of the minimum does
minimized by a coarse search over wo followed by a gradient not change much when M is chosen greater than 2. This
descent procedure. We have derived explicit expressions for shows that the precise value of M may not be that critical
the gradient and the Hessian, which are given in (7). Once while estimating c.o. Also observe that the DFT magnitude
the best wo that minimizes E is found, the corresponding of the data clearly shows four or five distinct peaks in the
&mplitudes can be obtained from (5). frequency region from 0 to 1000 Hz.

We mention two closely related problems, In the case of The above method for estimating Ado is applied to con-
co-channel interference suppression [2), that is separating tiguous overlapping blocks of data. The block size was 64
speech signals from two different speakers that have been samples. The overlap was 60 samples. Fig. 4 shows the
added together, the same modeling procedure as above can pitch frequency track thus obtained and its multiples, as a
be used. Except, in this case, *,, in (1) will be modeled function of time (the dotted and solid curves; dotted curves
as a linear combination of two sets of harmonically related have been used for some harmonics for ease of visualization).
sinewaves with two different fundamental frequencies. Now Next, we also estimated the frequencies of the underlying
the error E in (6) will have to be minimized over two inde- sinusoidal components without assuming that the sinewaves
pendent fundarmenta.l frequencies. In other situations, such are harmonicxaly telated. This was done by a lea.st-3quares
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